ACCV 2020 - Augmentation Network for Generalised Zero-Shot Learning
- 1 minAugmentation Network for Generalised Zero-Shot Learning
Rafael Felix, Michele Sasdelli, Gustavo Carneiro, Ian Reid
Correspondent author: Rafael Felix – rafael dot felixalves at adelaide dot edu dot au
Abstract
Generalised zero-shot learning (GZSL) is defined by a training process containing a set of visual samples from seen classes and a set of semantic samples from seen and unseen classes, while the testing process consists of the classification of visual samples from the seen and the unseen classes. Current approaches are based on inference processes that rely on the result of a single modality classifier (visual, semantic, or latent joint space) that balances the classification between the seen and unseen classes using gating mechanisms. There are a couple of problems with such approaches: 1) multi-modal classifiers are known to generally be more accurate than single modality classifiers, and 2) gating mechanisms rely on a complex one-class training of an external domain classifier that modulates the seen and unseen classifiers. In this paper, we mitigate these issues by proposing a novel GZSL method – augmentation network that tackles multi-modal and multi-domain inference for generalised zero-shot learning (AN-GZSL). The multi-modal inference combines visual and semantic classification and automatically balances the seen and unseen classification using temperature calibration, without requiring any gating mechanisms or external domain classifiers. Experiments show that our method produces the new state-of-the-art GZSL results for fine-grained benchmark data sets CUB and FLO and for the large-scale data set ImageNet. We also obtain competitive results for coarse-grained data sets SUN and AWA. We show an ablation study that justifies each stage of the proposed AN-GZSL.
Extra material
Cite: